# Observation of Chla from Satellites in Estuaries: A case study in Tampa Bay, USA

Chengfeng Le, PhD <u>chengfeng@marine.usf.edu</u> University of South Florida College of Marine Science

USF UNIVERSITY OF SOUTH FLORIDA

COLLEGE OF MARINE SCIENCE ST. PETERSBURG, FLORIDA

### **Financial support:**

 NASA Gulf of Mexico Program
 NASA Water and Energy Cycle program
 NASA Ocean Biology and Biogeochemistry Program.



### **Red tide in coast and estuaries**



### **MODIS RGB images**

### **Coastal of Scotland**



France's Bay of Biscay **Chlorophyll a (Chla)** an effective index of phytoplankton biomass



**Observation of Chla from satellite is a great choice to monitor phytoplankton blooms in eutrophic waters** 

# Outline

Light environment in Tampa Bay
Existing algorithm validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

### **Ocean Color Background**



# **Ocean Color Background**



# Outline

Light environment in Tampa Bay
Existing algorithm validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

Tampa **Bay:** Surface area:  $1000 \text{ km}^2$ Mean depth: **4** m

Dataset #1: **USF** data 28.00 (1998-2010)27.80Gulf of Mexico -82.80 82,60

# Light Environment (Le et al., 2012, ECSS)

### 443nm

555nm



### **Case 2: CDOM-dominated**

# Outline

Light environment in Tampa Bay
Existing algorithm validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

Algorithm validation (Le et al., 2013, RSE) Two-band ratio algorithm (Rrs665/Rrs710) (Ruddick, 2001) Three-band algorithm (Rrs<sup>-1</sup>665-Rrs<sup>-1</sup>710)\*Rrs730 (Gitelson, 2005) Four-band algorithm (Rrs<sup>-1</sup>665-Rrs<sup>-1</sup>710)/(Rrs<sup>-1</sup>730-Rrs<sup>-1</sup>710) (Le, 2009)Synthetic chlorophyll index **SCI** (Shen, 2010)

### **Band locations for several ocean color sensors**

| Sensor         | Waveband locations                             |  |  |  |  |
|----------------|------------------------------------------------|--|--|--|--|
| SeaWiFS        |                                                |  |  |  |  |
| (1997-2010)    | 412, 443, 490, 510, 555, <b>670, 765</b> , 856 |  |  |  |  |
| MODIS          |                                                |  |  |  |  |
| (2002-present) | 412, 443, 488, 531, 547, 667, 678, 748, 869    |  |  |  |  |
| MERIS          | 412, 443, 490, 510, 560, 620, 665, 681,        |  |  |  |  |
| (2002-2011)    | 709, 754, 860                                  |  |  |  |  |

### The potential of these algorithms applied to several ocean color sensors



# Can these algorithms be applied to satellite imagery?



#### Dataset #2

EPCHC dataset 56 stations visited monthly 1974-2010



**EPCHC**: Environmental Protection Commission of Hillsborough County





#### **3-band**

SCI



# The applicability of the four algorithm to several ocean color sensors

|                         | 2-band | 3-band | 4-band | SCI |
|-------------------------|--------|--------|--------|-----|
| MERIS<br>(2002-2011)    |        | ×      | ×      | ×   |
| SeaWiFS<br>(1997-2010)  | ×      | ×      | ×      | ×   |
| MODIS<br>(2002-present) | ×      | ×      | ×      | ×   |

What can we do for MODIS and SeaWiFS?



# Outline

Light environment in Tampa Bay
Existing algorithm validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

A new algorithm (Le et al., 2013, PO) **RGCI---- Red Green Chla Index** For MODIS: **RGCI=Rrs(667)/Rrs(547)** For SeaWiFS: **RGCI=Rrs(670)/Rrs(555)** 

# A new algorithm----RGCI

**Image data:** 2004 - 2010**MODIS & SeaWiFS** In situ data: **Dataset #1** 2004-2010



# A new algorithm----RGCI

**Image data:** MODIS 2002-2010**SeaWiFS** 1998-2010 In situ data: **Dataset #2** 1998-2010



# A new algorithm----RGCI



# Yes, this **RGCI** algorithm can be applied to MODIS and SeaWiFS

# Outline

Light environment in Tampa Bay
Algorithms validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

Annual mean Chla time series 1998-2011 Le et al., (2013, RSE)





|                                             | Year | OTB    | HB     | MTB    | LTB    |
|---------------------------------------------|------|--------|--------|--------|--------|
| Management<br>Decision<br>Matrix:           | 1998 | Yellow | Yellow | Red    | Red    |
|                                             | 1999 | Green  | Green  | Yellow | Green  |
|                                             | 2000 | Green  | Green  | Green  | Green  |
|                                             | 2001 | Green  | Green  | Yellow | Yellow |
| "Green" means                               | 2002 | Green  | Green  | Yellow | Green  |
| stay on course                              | 2003 | Red    | Red    | Red    | Yellow |
| "Yellow" means<br>caution and stay<br>alert | 2004 | Yellow | Yellow | Yellow | Yellow |
|                                             | 2005 | Green  | Yellow | Yellow | Yellow |
|                                             | 2006 | Green  | Green  | Green  | Green  |
|                                             | 2007 | Green  | Green  | Green  | Green  |
| "Red" means take                            | 2008 | Green  | Green  | Green  | Green  |
| action                                      | 2009 | Green  | Green  | Green  | Green  |
|                                             | 2010 | Green  | Green  | Green  | Green  |
|                                             | 2011 | Green  | Green  | Green  | Green  |

# Outline

Light environment in Tampa Bay
Algorithms validation
A new bio-optical algorithm
Application of the new algorithm
Extension of the new algorithm

**Dataset #3: Chesapeake Bay** Surface area:  $11,600 \text{ km}^2$ **Mean depth:** 7 m **Field collection: 49** stations visited monthly 1996-2012 (Le et al., Prepared)





Relative error distributions for the two algorithms







Annual mean and anomaly Chla time series from 1998-2011 in Ch\_Bay



## Conclusions

Tampa Bay is a CDOM-rich Case 2 estuary

 All the validated algorithms can not be applied to MODIS and SeaWiFS imagery

 The new bio-optical algorithm (RGCI) has satisfied performance on MODIS and SeaWiFS

 Annual Chla variability in Tampa Bay is mainly controlled by climate variation

 The novel Chla algorithm (RGCI) has the potential to be applied to other turbid estuaries

# References

Le et al. (Prepared). Monitoring long-term chlorophyll a variation in Chesapeake Bay using satellite: application of a new algorithm
 Le et al. (2013). Climate-driven chlorophyll a changes in a turbid estuary: observation from satellite. *Remote Sensing of Environment* <u>http://dx.doi.org/10.1016/j.rse.2012.11.011</u>.

- •Le et al. (2013). Comparison and evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. *Remote Sensing of Environment*, 129: 75-89.
- •Le et al. (2012). Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observation. *Progress in Oceanography* <u>http://dx.doi.org/10.1016/j.pocean.2012.10.002</u>.
- •Le et al. (2012). Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light? *Estuarine, Coastal and Shelf Science*, <u>http://dx.doi.org/10.1016/j.ecss.2012.09.017</u>

•Le et al., (2011). Remote sensing of chlorophyll a in optically complex waters based on optical classification. *Remote Sensing of Environment*, 115:725-734.

- •Le et al., (2011). Remotely sensing of phycocyanin in highly turbid inland water in Lake Taihu, China. *International Journal of Remote Sensing*, 23(10), 8253-8269
- Le et al., (2010). Eutrophication of Lake Waters in China: Cost, Causes, and Control. *Environmental Management*, 45,662-668.
  Le et al., (2009). Validation of a Quasi-Analytical Algorithm for Highly Turbid Eutrophic Water of Meiliang Bay in Taihu Lake, China. *IEEE Trans. Geosci. Remot. Sens*, 47(8):2492-2500.

Le et al., (2009). A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. *Remote Sensing of Environment*, 113: 1175-1182.
Le et al.,(2009). Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. *Hydrobiologia*, 619:27-37.