

Long term monitoring of alkaline-saline lakes from satellite observations

Emma Tebbs, David Harper, John Remedios, Sean Avery

www.le.ac.uk

East African Rift Valley

Lake Bogoria

Lake Nakuru

Lake Elmenteita

MotivationAlkaline-saline lakes have unique ecology

Poorly studied – particularly their spectral properties

They support dense blooms of cyanobacteria
Chl-a:100 µgl⁻¹ to > 1000 µgl⁻¹

 Vital for flamingo conservation – lesser flamingos feed and reproduce only in alkaline-saline lakes

 Lesser flamingos are a near-threatened species and economically important

Objectives

 Use remote sensing to investigate the connection between <u>ecological</u> and <u>hydrological</u> processes in alkaline-saline lakes

 Produce <u>long-term</u> timeseries of ecological and environmental indicators from satellite data

Study sites

Lake Bogoria, NASA Landsat ETM+ image

Lake Bogoria	Lake Natron
 Key feeding site for Lesser Flamingos 	• Only breeding site for Lesser Flamingos in East Africa
• 10-12 m max depth	• < 3 m deep
 10 km long, 1 - 3 km wide 	• Up to ~ 800 km ²

Both lakes are in remote areas with no *in situ* monitoring.

Lake Natron, NASA Landsat ETM+

Lake Bogoria

- Dominated by one species of cyanobacteria: *Arthrospira fusiformis* (always over 80%)
- Occasionally the lake undergoes a drastic reduction in biomass, known as a die-off event.

- Aim:
 - Develop a Chl-a retrieval algorithm for Lake Bogoria

Cyanobacterium Arthrospira fusiformis

Lake Bogoria,

Methods

- Field spectroscopy study
 - Characterise optical properties

- Landsat ETM+ data and monthly Chl-a data
 - High spatial resolution (30m)
 - Long archive of imagery
 - Limited by low revisit frequency (16 days)

• DMC and MERIS

Field Measurements

University of Leicester

Fieldwork

- Confirmed that optical properties of Lake Bogoria are dominated by cyanobacteria
- Also showed high CDOM, $a_{CDOM}(440) = 17 \text{ m}^{-1}$, and high attenuation, Kd(PAR) = 12.6 m⁻¹.
- In situ measured reflectance spectra for Lake Bogoria show that the peak in reflectance in the NIR is correlated with Chl-a concentrations.

Water leaving reflectance spectra for Lake Bogoria.

University of Leicester

Algorithm

- TOA reflectance ratio R₈₃₅/R₆₆₀ gave the best correlation with Chl-a
- For Chl-a up to 800 µg/l

Chlorophyll maps

Landsat ETM+ B4:B3 2004-09-18

University of

Leicester

2004 die-off event

Recovery after die-off event

Chlorophyll timeseries

Date

Cyanobacterial scum

University of Leicester

DMC imagery

MERIS imagery

MERIS water leaving reflectance spectra. Atmospherically corrected using SMAC (Simple Method for Atmospheric Correction) in BEAM.

MERIS reflectance ratio, R₇₇₈/R₆₈₁, versus Chl-a

Lake Natron

- Large changes in surface area due to fluctuations in lake levels.
- Thought to be related to breeding success.
- Threatened by industrial developments
- Aim:
 - Produce a lake surface area timeseries from Landsat data
 - Relate to flamingo breeding events

Lake Natron, NASA Landsat ETM+

Lake Surface Area

Modified Normalised Difference Water Index:

$$MNDWI = \frac{Green - MIR}{Green + MIR}$$

- DOS-COST atmospheric correction was applied to images
- A list of observations of flamingo breeding at Natron was compiled

MNDWI results

True Colour Image

MNDWI

Lake Area Estimate

Lake area and breeding events

Date

Conclusions

- High spatial resolution sensors (Landsat, DMC) can provide <u>ecologically useful information</u> about alkaline-saline lakes which cannot be obtained from other sources.
- Moderate spatial resolution sensors (MERIS, OLCI) provide complementary data for the study of these small hypereutrophic waters.
- Fieldwork was extremely valuable for the interpretation of results obtained from satellite data.

Future work

- Landsat Chl-a retrieval work will be extended to other alkaline-saline lakes.
- Extend lake area work.
- Timeseries of other environmental variables (Temperature, precipitation etc.) will be produced and related to Chl-a.
- Apply MERIS algorithm to produce Chl timeseries and investigate other MERIS algorithms.

Thanks for listening

Acknowledgements: • NERC Field Spectroscopy Facility Centre for Interdisciplinary Science, University of Leicester EOS Group, University of Leicester MERIS data provided by the European Space Agency