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/ { Objectives

5.1  Assess the present state & evidence for long-term
change in the 1000 lakes.

5.2 Identify patterns of temporal coherence for individual
remotely sensed lake characteristics & the spatial
extent of coherence.

5.3 Identify phenological patterns of change in remotely
sensed lake characteristics.
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Coherence

The synchrony between major fluctuations in a set of time series is often
described as temporal coherence.

Group the time series into a suitable number of clusters where two time
series belong to the same cluster if they are coherent with each other.

We want to focus on comparing a
large number of time series and
aim to obtain clusters based on
common trends, seasonal
patterns and other features across
time.
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/ ( Statistical Approaches

- We are investigating (and developing) two different statistical
approaches:

- State space model
 Functional data analysis

- Both approaches can be applied to (potentially) thousands of time
series.

- The main difference is that one approach is based on the raw data and
the other uses smoothing.

- These techniques have been applied to a set of data from the ARC-lake
project which will be presented later.
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w State Space Approach

Each individual lake time series (y) is represented in terms of an
underlying (latent) time series (z).

y(t) = Kz(t) +e(t)
z(t)=Gz(t-1) +h(t)

i.e. each individual lake time series is clustered into one and only one
cluster, with error vectors e and h.

This is done on the basis of the temporal pattern in the time series and the
model is fitted using the EM algorithm.

This is a modification to a class of models known as Dynamic Factor
Analysis and is based on initial work by Finazzi (Fasso and Finazzi, 2011).
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) Functional Data Analysis

Each observed time series can be
expressed as

yi(£) = G;(t) + e;(t)

where G, is a smooth curve and e;

is an independent random error
term, i=1, ...,N lakes.

The curve G; is a spline function

of degree d which can be

expressed as a linear

combination of B-splines,
K+d—1

G (t) = Z Bi, 1B (1)
=1
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) Functional Clustering
[ (

Hierarchical

 The distance between the pairs of curves G, (t) and G; (1),
1,J = 1,...,N is first estimated as

dij= (.Bi'ﬁj)TW(ﬁ i .Bj)

where W is the symmetric matrix based on basis vectors.

- Standard algorithms for hierarchical clustering can then be applied
to the elements of the functional distance matrix D with entries d;;

K-means

An iterative partitioning procedure where the number of groups is first
specified, and then objects are moved from group to group, until the
within-group sums of squares is minimised.
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/ ) Determining the optimal number of clusters

/
State space

Two approaches have been investigated and proposed:

The number of clusters is increased (from 1) until the observed data
log-likelihood stabilizes and/or an additional cluster is empty.

Functional Data Analysis
Two standard approaches have been applied:

L-curve
Gap statistic

Both involve minimising the within cluster dispersion until it
stabilises to determine the number of clusters.
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/ { ) Clustering the ARC-lake data

» Clustering approaches are applied to the LSWT time
series of the ARC-Lake data set
(www.geos.ed.ac.uk/arclake) in order to cluster the
lakes into homogeneous groups with respect to their
temporal coherence.

- 5 years of weekly mean values were used in the
analysis (2006-2010) for 261 lakes.
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/ ( ) Clustering the ARC-lake data

- State space and hierarchical functional
clustering identified 11 clusters as optimal,

- k-means identified 77 clusters as being most
appropriate.

- In general, the results for all three approaches were
consistent however the state space model identified
one cluster with a single time series.
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Each approach .

provides a N

different

clustering result,

however, the :

temporal patterns .

they identify are -

similar. Results

for two clusters

are shown. :
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ARC-lake Clustering
State Space Model: 11 Clusters
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/ ( Summary

- These approaches are suitable for large numbers of time
series of potentially noisy data and enable clusters of curves
to be identified which are coherent in terms of temporal
dynamics.

- The approaches considered all, in general, produce results
which are consistent with each other.
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w Summary

- The model-based approach does not require the observed
time series to be smoothed and so the results obtained are
not influenced by the degree of smoothing applied.

- However, smoothing can be useful when highly noisy time
series are to be clustered, in which case the model-based
approach might over-estimate the number of clusters.
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