

Global Observatory of Lake Responses to Environmenial Change

Global Observatory of Lake Responses to Environmental Change

Workshop 1 University of Stirling

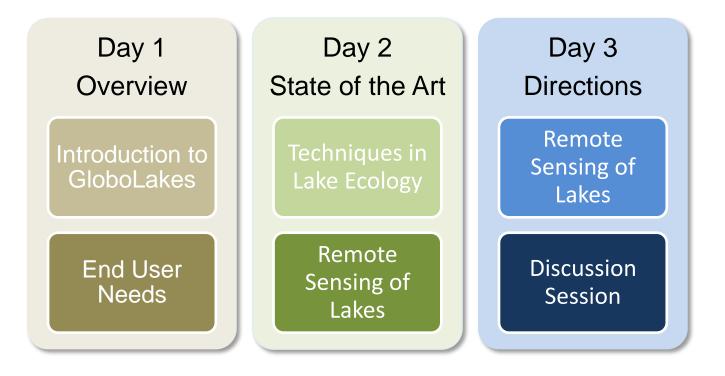
Andrew Tyler

UNIVERSITY OF STIRLING

Global Observatory of Lake Responses to Environmental Change

Workshop Objectives

- Introduce GloboLakes to the Scientific Community
- Bring together the *Project Partners* and other key scientist working in Earth Observation of Lakes
- Review the State of the Art
- Establish the working synergies with other national and international programmes and researchers
- Identify possible efficiencies
- Agree on the *data sharing policy*
- Collectively provide the basis for a *position paper on the lake remote sensing*



Global Observatory of Lake Responses to Environmental Change

Workshop Structure

Rationale

- 300 million lakes globally
- Providing essential ecosystem goods & services
- Fundamental to global food security
- Global concerns over future water security
 (Unsustainable use; MEA 2005)
- Important in global biogeochemical cycling (Bastviken et al. 2011, Science)
- Yet:
 - Hard to monitor
 - Existing Monitoring
 - Very small proportion (<0.00003 %)
 - Inconsistently

Rationale

Global Observatory of Lake Responses to Environmental Change

- Lakes are 'sentinels' of environmental change
- These can trigger internal interactions & direct responses leading to:
 - loss of habitat
 - eutrophication
 - fish kills
 - loss of species (highest proportion of species threatened with extinction; MEA 2005)
 - altered communities & shifts to less desirable species

Nutrient enrichment

Land use change & deforestation

Water abstraction

Climate change

Invasion of non-native species

Plymouth Marine Laboratory

Rationale

Global Observatory of Lake Responses to Environmental Change

Timeliness:

- Increasing robustness of algorithms and ensemble approaches
- Capability for processing huge data volumes in near real time
- MERIS: spectral and temporal resolution (until April 2012)
- GMES: ESA planned launches superior capabilities (2014)

Opportunity:

Access to nearly 20 years of data on 1000 lakes of different types across the globe will give a unique opportunity to ask fundamental ecological questions in relation to the status and change in the condition of the world's lakes

UNIVERSITY OF

STIRLING

The Consortium

Plymouth Marine

UNIVERSITY OF

STIRLING

Global Observatory of Lake Responses to Environmental Change

- Andrew Tyler, Peter Hunter, Evangelos Spyrakos University of Stirling, UK
- Steve Groom, Victor Vicente-Martinez, Gavin Tilstone, Giorgio Dall'Olmo Plymouth Marine Laboratory, UK
- Christopher Merchant, Stuart MacCallum University of Edinburgh, UK
- Mark Cutler, John Rowan, Terry Dawson, Eirini Politi University of Dundee, UK
- Stephen Maberly, Laurence Carvalho, Stephen Thackery Centre for Ecology & Hydrology, UK

University of Glasgow

PM

• Claire Miller, Marion Scott University of Glasgow, UK

DUNDEE

Questions

Global Observatory of Lake Responses to Environmental Change

What controls the differential sensitivity of lakes to environmental perturbation?

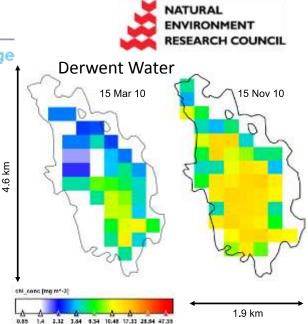
Some pressing questions:

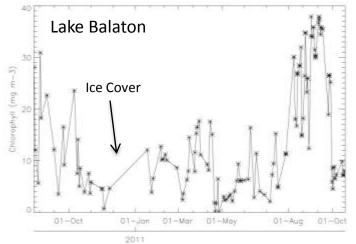
- What is the present state & evidence for long-term change for the 1000 lakes?
- To what extent are patterns temporally coherent & what are the causes?
- Is there evidence for phenological change & what are the causes? Change
- What factors control cyanobacterial blooms?
- What factors control the concentration of coloured DOC?
- How sensitive are different lake types to varying environmental perturbation?
 Resilience
- Can we forecast the future response of phytoplankton composition & abundance, & risk of cyanobacterial blooms, for lakes in different landscapes?

Controls

UNIVERSITY OF STIRLING

ATURAL




Aims and Objectives

Global Observatory of Lake Responses to Environmental Change

Investigate the state of lakes & their response to environmental change drivers:

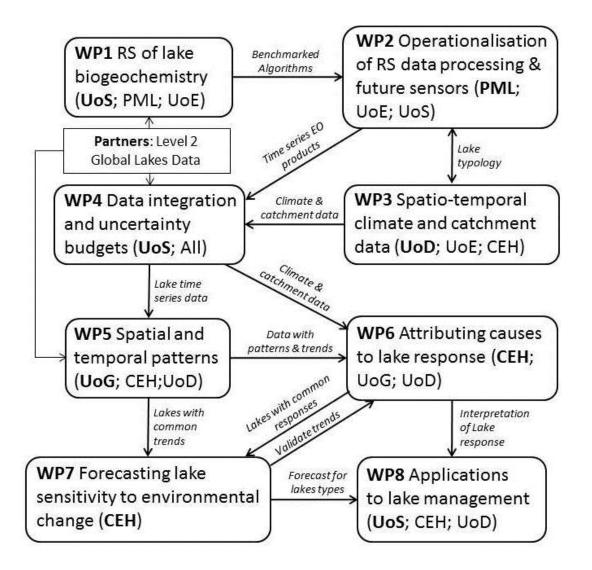
- Near real time processing satellite based observatory
- Processing archived data for up to 20-year time series
- Including: (i) LSWT; (ii) TSM; (iii) CDOM; (iv) Chl a;
 (v) PC
- Detect spatial & temporal trends & attribute causes of change for 1000 lakes worldwide (1/3 of inland water, 2/3 of all inland water > 1km²)
- Forecast lake sensitivity to environmental change
- Apply findings into lake management
- Tied PhD Primary Productivity

UNIVERSITY OF

STIRLING

Foundations

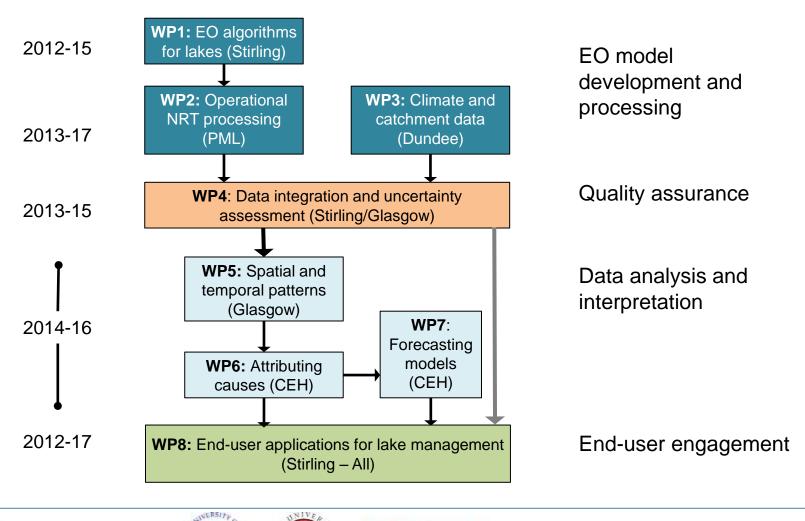
Global Observatory of Lake Responses to Environmental Change


Plymouth Marine Laboratory

UNIVERSITY OF STIRLING

Centre for

Ecology & Hydrology

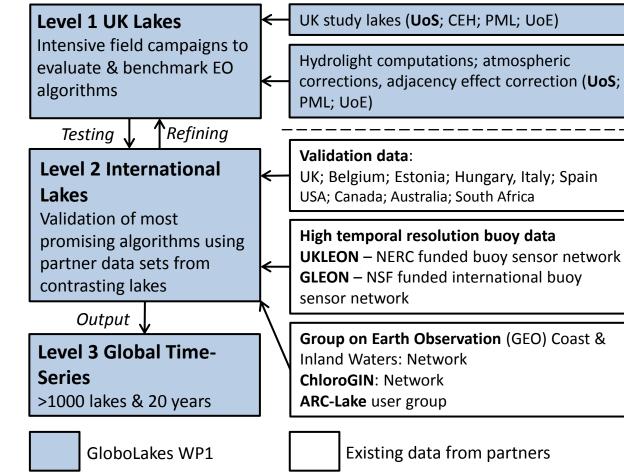

NATURAL ENVIRONMENT RESEARCH COUNCIL

DUNDEE

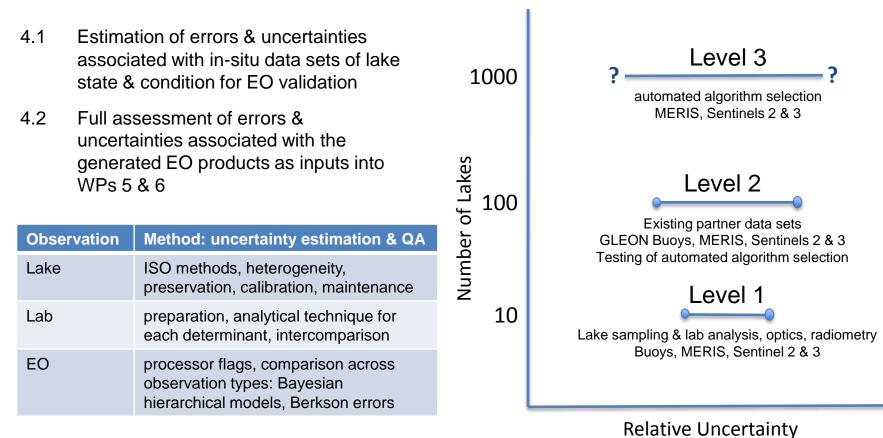
Work package Structure

Global Observatory of Lake Responses to Environmental Change

University of Glasgow


Gantt Chart		Start Date	· 1 Octobr	or 2012	Duration:	60 Month													End Data	: 30 Septer	mbor 201	
WP Tasks		Start Date		912012	Duration.	60 MONUNE	5												End Date	. 30 Septer	Inder 201	
			Year 1				Year 2				Year 3				Year 4				Year 5			
	month of project activities	1-2-3			10 - 11 - 12	1-2-3			10 - 11 - 12	1-2-3	4-5-6		10 - 11 - 12	1-2-3	4-5-6	-	10 - 11 - 12	2 1-2-3		7-8-9	10 - 11 - 1	
WP1 RS Algorith	nm Development								-												-	
D1.1	Space-time variability in lake optical properties								D1.1													
D1.2	Intercomparison and benchmarking of algorithms								D1.2		D1.2											
D1.3	Ensemble algorithm for global scale operation	1									D1.3											
D1.4	Extend ARC-Lakes LSWT data set	t							D1.4													
WP2 Algorithm	Operationalisation																					
D2.1	Automated data processing Chain											D2.1										
D2.2	Consistent MERIS and Sentinel 3 data sets																D2.2	2				
D2.3	Operational Global Lakes Observatory													D2.4								
D2.4	Archived Data dissemination	1																			D2.4	
D2.5	LSWT time series 1991-2007	·																			D2.5	
WP3 Climatic &	Nonoclimatic Drivers																					
D3.1	Selection of sentinel lakes	D3.1																				
D3.2	Datasets of long term trends in climatic variables			D3.2																		
D3.3	Characterisation of landcover/land use trends									D3.3												
D3.4	Modelling run off, sediment & nutrient inflow												D3.4									
D3.5	Hydromorphological alteration assessment							D3.5	ō													
	ration & Uncertainty Budgets																					
D4.1	QA'd intercomparable and documented datasets								D4.1				D4.1									
D4.2	Measures of uncertainty on lake observations								D4.2													
D4.3	Uncertainties with catchmen and climate drivers		D4.3						D4.3		D4.3		D4.3									
D4.4	Measures of uncertainty on EO products												D4.4									
	Spatial and Temporal Patterns																					
D5.1	Inventory of lake condition > 1000 global lakes												D5.1									
D5.2	Indentification of long term patterns of change																	D5.2				
D5.3	Identification of clusters of common signals																	D5.5				
D5.4	Identification of non conforming lakes																	D5.6	i			
WP 6 Attributing Causes of Lake Response																						
	es of coherence for different senssed lakes characteristics																				D6.1	
D6.2	Causes of phenological change																				D6.2	
D6.3	Factors controlling cyanobacterial blooms																				D6.3	
D6.4	Assessment of factors controlling CDOM	1																			D6.4	
	ion and forecasting Lake sensitivity																					
D7.1	The identification of lake types vulnerable																				D7.1	
D7.2	Cyanobactria risk under a range of scenarios																				D7.2	
	for Lake Management																					
D8.1	Stakeholder requirements and research capabilities	D8.1						D8.1					D8.1								D8	
D8.2	UK wide understanding of change in lake condition	D8.2						D8.2					D8.2								D8	
D8.3	Future threats to lakes at a global scale	·	L				L					L									D8	
D8.4	A sustainable future for Globolakes			L							L					L					D8.	
Project Meetings	G (T = Teleconference; M = meeting)		_	_	_		-	-	-		-	_			-							
	GloboLakes Team)	M	Т	T	Г	M	Т	Т	Т	M	T	Т	M		Т	Т	Т	r N	T	Г	M	
	Project Advisory Board	M				M				1			M								М	
Dissemination of		D 0 (
DO.1 DO.2	Project Web Site	DO.1		l		DO.2				DO.2				DO 0		l		DO.2		───	DO.2	
DO.2 DO.3	News Letters Publications	DO.2				00.2				00.2				DO.2				00.2	-		D0.	
	Publications																				-	
Impact Plan		DI 4		l												l				───		
DI.1	Project launch	DI.1 DI.2			<u> </u>								DI.2			<u> </u>			l	───	DLO	
DI.2	End User Workshops				<u> </u>				DI.3	L										<u> </u>	DI.2	
DI.3	Partners Workshop Calibration	DI.3							DI.3				DI.3				DI.4			<u> </u>	DI.3 DI.4	
DI.3	Partners Workshop Validation				DI.5					DI.5			DI.4			<u> </u>	DI.4			───	DI.4	
DI.4	Secondments	<u> </u>			01.5											<u> </u>		DI.5		<u> </u>		
	KEY		Workpack	kage effort		D1.1	Timing of	individual o	component	s and mont	th of deliver	able, i.e. D	01 (e.g. sta	rt, mid or e	end quarter)						

Lake Data

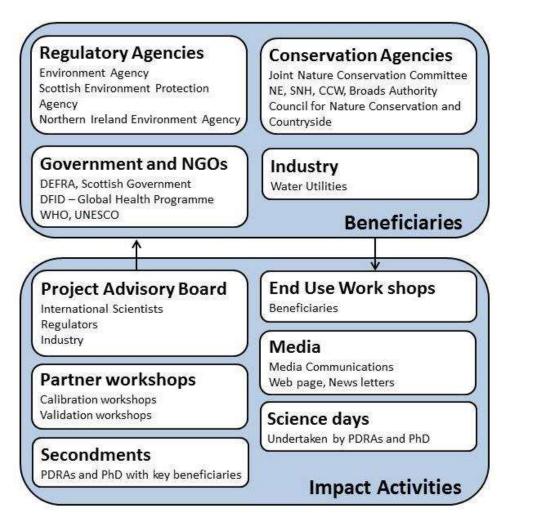


WP4: Uncertainty budgets

Global Observatory of Lake Responses to Environmental Change

Aim: Construct uncertainty budgets for each of the different data sources to incorporate in the EO calibration

Centre for Ecology & Hydrology



Impact

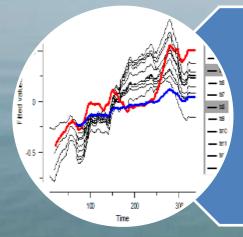
Global Observatory of Lake Responses to Environmental Change

Success of GloboLakes will rely on contributions from across the EO and end-user communities

- More than 20 scientific partners from over 15 nations
 - CSIRO, Australia; CSIR, South Africa; VITO, Belgium
 - Environment Canada; Estonian Marine Institute;
 - EC Joint Research Centre; CNR-IREA, Italy;
 - INTA, Spain; CUNY, USA; Creighton, USA
 - South Florida, USA; Institute of Limnology, Nanjing...
- Engagement with end-users including UK environmental regulators (EA, SEPA, NIEA)
- Engagement with UK National Centre for Earth Observation (NCEO), European Environment Agency, ESA and GEO

Year	Year 1				Year 2					Yea	ar 3			Yea	ar 4		Year 5			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Project Advisory Board	Μ				Μ				M/ T			Μ					M/ T			Μ
Stakeholder																				
End User Workshops																				
Partners Calibration																				
Partners Validation																				

GloboLakes


NATURAL ENVIRONMENT RESEARCH COUNCIL

Global Observatory of Lake Responses to Environmental Change

We all recognise:

- Long-term data sets provide some of the most powerful tools that we have to describe ecosystem function, variation & resilience to environmental change
- For Lakes a critical interface with society Earth Observation provides a powerful approach to monitor lakes globally

GloboLakes will deliver:

- Long-term data sets across the globe
- Consistent measures of physical & biological condition
- Data enabling hypotheses on processes that operate over large scales & long time frames to be tested
- Data for the effective and sustainable management of these dynamic environments

