

Diversity II

Carsten Brockmann Diversity II Project Manager Brockmann Consult, Germany

International Environmental Conventions

- Dramatic environmental problems affecting our planet have mobilised governments, scientists and environmental organisations over the world.
- As a result, several Multilateral Environmental Agreements (MEAs) have been signed that aim at reducing environmental degradation.

The United Nations Conference on Environment and Development (UNCED), also known as the 'Earth Summit', held in Rio in 1992. It resulted in the definition of the 'Agenda 21' plan of actions and the subsequent signature of different multilateral agreements such as

- the UN Convention to Combat Desertification (UNCCD),
- the UN Convention on Biodiversity (CBD)
- the UN Framework Convention on Climate Change (UNFCCC).

ESA and International Environmental Conventions

• UNFCCC,

UN Framework Convention on Climate Change

• UNCCD,

UN Convention to Combat Desertification

• CBD,

UN Convention on Biodiversity

Ramsar,

Intergovernmental Convention on Wetlands

• *WHC*,

World Heritage Convention

European Space Agency

CBD UN Convention on Biological Diversity

http://www.cbd.int/

European Space Agency

The Global Biodiversity Outlook (GBO)

Global Biodiversity Outlook 3

- **Sept 2002**, 2nd Earth Summit, Johannesburg "achieve by 2010 a significant reduction in the rate of Biodiversity loss"
 - Year 2010, International Year of Biodiversity

Global Biodiversity Outlook 3 "2010 targets have not been met" "State of Biodiversity: Collective failure"

- **Sept 2010**, UNGA 65th Session "first high level meeting on Biodiversity"
- **Oct 2010**, UNCBD COP-10, Nagoya "new strategic plan for the coming decade with a 2020 mission and a 2050 vision"

June 2012: Rio+20 Earth Summit

United Nations Conference on Agency Sustainable Development (UNCSD)

Natural habitats continue to decline in extent and in integrity

Five main pressures continue to affect biodiversity and are either constant or increasing in intensity:

- Habitat loss
- Unsustainable use and overexploitation of natural resources
- Climate change
- Invasive alien species
- Pollution

BUT

- Some 170 countries have national biodiversity strategies and actions plans
- Important progress in developing mechanisms for research, monitoring and assessment of biodiversity
- The real benefits of biodiversity, and the costs of its loss, are progressively reflected within economic systems and markets.

CBD Sourcebook on Remote sensing

Secretariat of the Convention on Biological Diversity

SOURCEBOOK ON REMOTE SENSING AND BIODIVERSITY INDICATORS

Prepared by the NASA-NGO Biodiversity Working Group and UNEP-WCMC to support implementation of the Convention on Biological Diversity

Edited by Holly Strand, Robert Höft, James Strittholt, Lera Miles, Ned Horning, Eugene Fosnight and Woody Tumer

"....Technological advances, refined methodologies and growing databases make our systems for monitoring biodiversity increasingly effective.... Remote sensing is without a doubt one of the indispensable tools for detecting changes in multiple facets of biodiversity over time..."

UN-CBD Secretariat Technical Series No. 32,

"Sourcebook on Remote Sensing and Biodiversity Indicators" European Space Agency

Space contribution to UN Convention on Biodiversity

CBD Focal Areas	Headline Indicators
Status and trends of the components of biological diversity	 Trends in extent of selected biomes, ecosystems & habitats Change in status of threatened species Coverage of protected areas
Sustainable use	 Area of forest, agricultural and aquaculture ecosystems under sustainable management
Threats to biodiversity	 Trends in invasive alien species (IAS)
Ecosystem integrity and ecosystem goods and services	 Connectivity / fragmentation of ecosystems Water Quality of freshwater ecosystems

CBD global headline indicators to assess progress towards the 2010 biodiversity target UNCBD COP VII, decision VII/30

European Space Agency

Contribute to the CBD programs of work

- on the biological diversity of respectively inland water and drylands ecosystems,
- global assessment of the availability of freshwater and of its quality with the provision of key observations over large perennial inland waters (lakes and reservoirs)
- assessment of the status and trends of the biological diversity in dry and subhumid lands.

Diversity II

Specific Objectives

- Produce and deliver a number of Earth Observation (EO) application products
 - Parameters:
 - Inland Waters
 - availability of freshwater
 - quality of freshwater, reflected in its water constituents such as chlorophyll-a and/ or suspended matter concentration, as well as by its temperature
 - Drylands and sub-humid lands
 - Net Primary Productivity (NPP), and/ or related indices on the vegetative/ biomass productivity
 - Rain use efficiency and/ or related indices on the land/ vegetation conditions (status and degradation)
 - Status maps, associated change maps, status indicators and trend indicators aggregated at different spatial and temporal levels

Dimension of the Work

- Spatial extension
 - 300 large perennial inland waters
 - ≥ 20 dryland areas, globally distributed, 10 million km²
- Temporal coverage
 - 10 years of ENVISAT data: 2002 2012
- Instruments
 - Optical visible, optical thermal, active and passive microware sensors:
 - ENVISAT: <u>MERIS</u>, AATSR, RA-2 and ASAR
 - Complemented by selected HR products
 - Preparing Sentinel 2, Sentinel 3 and Proba-V

The 6 cornerstones of our Approach

- 1. Link biodiversity users and EO experts
 - 2. Selection of best algorithms
 - 3. Software and production
 - 4. Validation
- 5. Communication and product dissemination
 - 6. Preparing the future

The 6 cornerstones of our Approach

1. Link biodiversity users and EO experts

- 2. Selection of best algorithms
 - 3. Software and production
 - 4. Validation
- 5. Communication and product dissemination
 - 6. Preparing the future

1. Link biodiversity users and EO experts

- Diversity User Bureau (DUB)
- User Consultation meetings
- Promotion activities
- Analysis of documentation and comments received

XI Conference of Parties CONVENTION ON BIOLOGICAL DIVERSITY HYDERABAD INDIA 2012

User Participation

The 6 cornerstones of our Approach

1. Link biodiversity users and EO experts

2. Selection of best algorithms

3. Software and production

4. Validation

5. Communication and product dissemination

6. Preparing the future

Major environmental problems in lakes and reservoirs

After UNEP

Water Quantity: Water Level

Coverage of RLH products, Rivers and Lakes Project

Time series Lake Victoria for the parameters height difference (red) and volume difference (blue)

- CFI Product, easy readable
- Information provided: time, height difference to reference, volume difference
- Quality unknown \rightarrow QC needs to be developed, implemented and tested
- Lack of coverage in Northern Europe

Water Quantity: Extent

Standard Water Mask

MERIS tie point grid: GTOPO30 based, AMORGOS precise geolocation not applicable

BEAM Processor: SRTM based, AMORGOS improvements taken into account

SAR Water Bodies

Water surfaces are temporal variable In radar backscatter (wind induced roughness)

Analysis of ASAR WS full mission Dataset

Original resolution: 150 Consolidated product at 300m, matching MERIS FR

Lake Water Surface Temperature

LWST in BEAM

Example for LSWT, CHI2, ERR_LSWT, VAR_LSWT, Lake Victoria

Provisional Inland Waters Processing Chain

- 1. Subsetting (childgen)
- 2. Geometric Correction (AMORGOS)
- 3. Radiometric correction (BEAM Smile Correction, Calibration)
- 4. Land-water masking (SAR Water Bodies or SRTM)
- 5. Cloud screening (BEAM IdePix + temporal filter + more?)
- 6. Adjacency Correction (probably BEAM ICOL)
- 7. Atmospheric Correction (to be investigated)
- 8. Optical Water Type Classification (to be investigated)
- 9. Retrieval of Chl-a, TSM, YS, turbidity, Secchi Depth (to be investigated: CC, BEAM FUB-WeW, 2 or 3 band ratio algos, Case2R, Forward-NN ...)
- 10. Collocation with CFI data: Water extent, height, Lake ST (ARC from AATSR)
- 11. Indicator 1: Spatial and temporal integration, change indicators (BEAM/Calvalus Mosaicing, Binning, BEAM time series tool)
- 12. Indicator 2: Combined Biodiversity Indicators Calculation (to be defined)
- 13. Map generation
- 14. Time series, Trend retrieval
- 15. QC

Atmospheric Correction over Water

Turbidity, Lake Peipsi, Estonia

- Aerosol models are critical
 - CoastColour results
 - NASA mixture model
- Different technical approaches
 - CoastColour neural network
 - SeaDAS NIR/SWIR method
 - FUB NN inversion (correlations)
- Method intercomparison
 - Validation with Aeronet

- Challenges:
 - Large range of aerosol types, including absorbing aerosols
 - Large range of aerosol optical thickness
 - Strong contrasts between land and water ightarrow adjacency effect
 - Shadowing effect of mountains
 - Surface reflexion of neighbourhood, especially from mountains
 - Water reflectance
 - CDOM dominated waters \rightarrow very low signal in short wavelength bands
 - Sediment loaded waters \rightarrow high reflection in the red NIR
 - Eutrophic water → largely variable SIOPs across lakes
 - Bottom reflection

CoastColour AC: Rio de la Plata

Comparison CC – standard 3RP

CoastColour AC Validation

All MERMAID Samples

AAOT Northern Adriatic Sea

Acknowledgement to all MERMAID Pis for in-situ data (full list see hermes.acri.fr/mermaid) and ESA, ACRI-ST, ARGANS for access to the MERMAID system^{g10(rhow_wn_IS_MERMAID)}

Lake Balaton

- Optical Water Type Classification
 - Potential to direct the algorithm (e.g. method selection, band selection, weighted merging, ...)
- Inversion methods
 - General: Spectral matching by neural network (CoastColour, Case2R, FUB), LUT search (Mobley), PCA inversion (Neumann)
 - Specific: colour ratio, single band (e.g. for very high sediment loading)
 - Most critical: bio-optical model
 - Specific Inherent Optical Properties (e.g. Brando
 - Flexible component model (CoastColour: 5 components)
- Diversity requires fully automated procedures
 - Intercomparison of candidates over 10 lakes during experimental analysis
 - Candidates: CoastColour, FUB, red-NIR ratios, CDOM band ratios (preselection will be discussed this Thursday)

Indicators

- Absolute Indicators
 - "In-depths" lakes
 - Good characterisation available (SIOPs for WQ, LWST, height)
 - indicators based on absolute values

Lake Category	Chlorophyll (mg/m3)		Transpare	ency (m)	Lake	LakeStatus
	Mean	Max	Mean	Min	Name	
Ultra-	<1.0	<2.5	>12	>6		UL
Oligotrophic					Name	
Oligotrophic	<2.5	<8.0	>6	>3		OL
Mesotrophic	2.5-8	8-25	6-3	3-1.5	Name	MESO
Eutrophic	8-25	25-75	3-1.5	1.5-0.7	Namo	
Hypertrophic	>25	>75	<1.5	<0.7	ivaille	MESO
					Name	

- Relative Indicators
 - General approach, applicable to all lakes
 - Not sufficient in-situ characterisation available for absolute quantities
 - Indicators based on relative differences
 - Classification into "low moderate high" for each parameter possible
 - introduced uncertainty is assumed to be a bias → trends are reliable

Chl a, July means, 2010-11

nland Water Products

Water Quality

Water Quantity

Water Constituents

Data source: MERIS Full Resolution

Parameters: Turbidity, Secchi Disk depth, chlorophyll-a concentration, suspended sediment concentration, yellow substance absorption; quality indicator; variance of parameter during averaging interval

Spatial resolution: 300m

Temporal averaging: daily / monthly / yearly (currently under discussion with users)

Lake Surface Water Temperature

Data source: AATSR (ARC Lake dataset)

Parameters: Lake Surface Water Temperature (LSWT), Uncertainty estimate for lake surface temperature, Chi-squared (goodness of fit measure for OE retrieval); Variance of LSWT over averaging period/area over averaging period/area

Spatial resolution: 0.05 degree grid / Lake-mean Temporal averaging: None / Climatology / Timeseries

Water Level

Data source: Radar Altimeter (River and Lakes database)

Parameters: Water height difference to reference level, water volume difference

Spatial resolution: one or more points per lake (crossing points of altimeter tracks)

Temporal averaging: time series

Water Extent

Data source: ASAR WS (LC-CCI processing) + MERIS Full Resolution

Parameters: land-water mask

Spatial resolution: 300m

Temporal averaging: 1 map derived from 10 year time series; for some areas a seasonal climatology is available; temporal variability from combination with optical data

Indicators: First level indicators

First level indicators are derived from the basic parameters above by spatial and temporal aggregation in order to indicate trends.

Parameter	Indicator for		
Chla	Eutrophication		
TSM	Physical disturbance		
Yellow Substance	Contamination		
Turbidity	Physical disturbance a	nd/or contamination	
Secchi Depth	Physical disturbance a	nd/or contamination	
Temperature	Eutrophication		
Volume and extend	Physical disturbance, r	ain fall	
Map/Indicator	Derived from	Classification	
Mean <parameter></parameter>	Mean from period 2004-	Low, moderate, high	parameter
Epoch 1	S2006	concentrations/trans	sparency
Mean <parameter></parameter>	Mean from period 2007 –	Low, moderate, high	parameter
Epoch 2	2009	concentrations/trans	sparency
Mean	Mean from period 2010-	Low, moderate, high	parameter
<parameter>Epoch 3</parameter>	2012	concentrations/trans	sparency
Lake Status	Classification	Poor, moderate, high	n status
Trend <parameter></parameter>	Mean(2004-2006)/	0-0.8 = negative dive	rsity trend (NegDiv)
Epoch 1/2	Mean(2007-2009)	0.8-1.2 = No change	(NoChange)
		1.2+ = positive divers	sity trend (PosDiv)
Trend <parameter></parameter>	Mean (2007-2009)/ Mean	0-0.8 = negative dive	rsity trend (NegDiv)
Epoch 2/3	(2010-2012)	0.8-1.2 = No change	(NoChange)
		1.2+ = positive divers	sity trend (PosDiv)
Trend <parameter></parameter>	Mean (2004-2006)/ Mean	0-0.8 = negative dive	rsity trend (NegDiv)
Epoch 1/3	(2010-2012)	0.8-1.2 = No change	(NoChange)
		1.2+ = positive divers	sity trend (PosDiv)
Lake Trend	T1 and T2	POS, NEG, STABLE, U	NCERTAIN

nland Water Products

Indicators: Second level indicators

Second level indicators combine several of the above water quality and water quantity parameters, complement them with additional information such as land use, and derive a value added product that relates to biodiversity data. These second level indicators will be defined and developed during the first phase of the project.

Dryland Algorithms

- Atmospheric correction
 - LandCover CCI algorithm (Round Robin result)
- EO based dryland vegetation condition assessments
 - NPP through green biomass approximated by MERIS NDVI
 - Linkage to heritage datasets from AVHRR
 - NPP through fAPAR
 - Better relationship to NPP
 - Studying relationship to SVAT model results
- Link between NPP and RUE proxies and biomass
- Combined Biodiversity Indicators in Drylands

NDVI trend and residual trend

(b) Trend of NDVI 93-00/07-09, based on biggest 6month NDVI Sum (93-00)

(c) Trend of NDVI-SWI residuals 93-00/07-09, based on calendar year averages

(d) Trend of NDVI-SWI residuals 93-00/07-09, based on calendar year averages with superimposed MARS crop mask of Africa (V2.2) - crops shown in a brown tone

Pearson r SWI-NDVI < 0.2	
Increase < signif. Pearson r	
Increase slope > 0.5	
Increase slope 0.25 - 0.5	
Increase slope < 0.25	
Decrease slope < 0.25	
Decrease slope 0.25 - 0.5	
Decrease slope > 0.5	
Decrease < signif. Pearson r	

Dryland test sites

The 6 cornerstones of our Approach

- 1. Link biodiversity users and EO experts
 - 2. Selection of best algorithms
 - 3. Software and production
 - 4. Validation
- 5. Communication and product dissemination
 - 6. Preparing the future

Processing Graph

The 6 cornerstones of our Approach

- 1. Link biodiversity users and EO experts
 - 2. Selection of best algorithms
 - 3. Software and production

4. Validation

5. Communication and product dissemination

6. Preparing the future

Validation Strategy

- 1. Methodology / Protocols
 - Preprocessing: reference to literature (GlobCover) and other projects (LC-CCI, Globalbedo); verification on samples
 - Inland water
 - Match-up analysis, satellite intercomparison
 - radiometry: MVT / MERMAID protocol
 - IOPs, concentrations: MVT / MERMAID / MERIS Lakes protocols
 - Drylands
 - Fluxnet data
 - Combined biodiversity Indicators
 - Relating production to biodiversity databases
- 2. In-depth validation
 - 10 lakes with high quality in-situ data available
 - 5 dryland sites
- 3. Full product set
 - Cooperation with and feedback from users

Validation Plan

			Algorithm validation			in-depth validation		full product set validation					
	0	2	4	6	8	10	12	14	16	18	20	22	24
	КО					CDR		QAR			SDR		FR
Pre-processing													
Geometry			BC (lite	erature, sa	mple verifi	cation)			BC (sa	mple verifi	cation)		
Atm. Corr.			BC (L	C-CCI, sam	ple verifica	ition.)	BC (sample verification)						
Geobiochem. processing													
in water (abs, scatt,)			BG + BC + Consultants (comparison with			BG + BC +		BG (sample verification.)					
				simulated	and in-situ)	Consultants (comp.						
							w.	in-situ)					
dryland (NDVI, fAPAR,)			BC + Ge	oville (liter	ature, veri	fication)	BC + Geoville		BC (sample verification.)				
Indicators I (status, change)													
Chl, transpar.			BG + BC + CIBIO (comp. w. in-situ)		BG + BC + Cons +		CIBIO + users (user						
					CIBIO (comp. w. in-		assessment)						
								situ)					
NPP, RUE			Geoville + consultants + CIBIO (comp. w.			Geoville +		CIBIO + users (user					
				ref.	data)		consultants + CIBIO		assessment)				
							(comp.	w. ref. data:					
							rainfall fr	rom ECMWF,					
							soil mois	ture from TU					
							Vi	enna)					
Indicators II													
combined lakes indicators.			CI	BIO (plausi	bility chec	ks)	CIBIO (Cł	hl or PP vers.	CIBI	O + users (user		
							num s	spec. from	a	assessment	:)		
							biodiv.	databases)					
aggregated dryland indicators.			CIBIO (plausibility checks)			CIBIO (NPP vers. Num		CIBIO + users (user					
							spec. fr	rom biodiv.	a	assessment	:)		
							dat	abases)					

Provisional List of Validation Sites (Inland Waters)

Lake	Country	biodiversity priority	ARC lake	size / km²	expert	in-situ data availability
Alexandrina	Australia	-	х	570	Arnold Dekker, CSIRO	AOPs, IOPs, concentrations (tbc) (+SIOPs for algorithm calibration tbc)
Balaton	Hungary	х	х	590	worldlakes database	chl concentration
Constance	Austria, Switzerland, Germany	-	х	540	FP7 Freshmon project (BC being participant)	AOPs, IOPs, concentrations (+SIOPs for algorithm calibration)
Erie	Canada, USA	х	х	25 657	Steve Grebb (consultant)	IOPs, concentrations (AOPs and SIOPs tbc)
Inari	Finland	-	х	1050	Sampsa Koponen, SYKE (consultant)	AOPs, IOPs, concentrations
Mälaren	Sweden	-	Х	1140	Petra Philipson (team)	AOPs, IOPs, concentrations (+SIOPs for algorithm calibration)
Michigan	USA	х	Х	58 000	Steve Grebb (consultant)	Concentrations, probably also AOPs, IOPS and SIOPs
Nicaragua	Nicaragua	-	х	8150	Dr. S. Spitzy, Univ. Hamburg (CoastColour)	Concentrations
Orivesi	Finland	-	х	600	Sampsa Koponen, SYKE (consultant)	AOPs, IOPs, concentrations
Päijänne	Finland	-	х	1090	Sampsa Koponen, SYKE (consultant)	AOPs, IOPs, concentrations
Peipsi	Estonia, Russia	-	х	3500	Anu Reinart, Tartu Observatory	AOPs, IOPs, concentrations (+SIOPs for algorithm calibration)
Pielinen	Finland	-	х	850	Sampsa Koponen, SYKE (consultant)	AOPs, IOPs, concentrations
Tanganyika	Burundi, Tanzania,	x	Х	32600	Steef Peters, IVM World lakes DB	Concentrations
Titcaca	Bolivia, Peru	x	Х	8372	ESA (tbc) World lakes DB	From WB project (tbc)
Vänern	Sweden	-	Х	5650	Petra Philipson (team)	AOPs, IOPs, concentrations (+SIOPs for algorithm calibration)
Vättern	Sweden	-	х	1910	Petra Philipson (team)	AOPs, IOPs, concentrations
Victoria	Kenya, Tanzania, Uganda	-		68460	Kai Sorensen, NIVA (consultant)	AOPs, IOPs, concentrations
Winnebago	USA	-	х	557	Steve Grebb (consultant)	Concentrations, tbc: AOPs, IOPS and SIOPs

Inland Water Products Validation

Species range maps from International Union for Conservation of Nature (IUCN)

Inland Water Products Validation

Validation: Issues to be addressed

- Changes/trends indicators: species data unavailable
- Coarse diversity data: IUCN range polygons
- Available databases: Fishbase, Global Biodiversity Information Facility (GBIF), National Atlases

The 6 cornerstones of our Approach

- 1. Link biodiversity users and EO experts
 - 2. Selection of best algorithms
 - 3. Software and production
 - 4. Validation
- 5. Communication and product dissemination

6. Preparing the future

User Interaction Means

Web Portal

- Project Information
- Algorithms and Products
- Validation results
- Online handbook
- Biodiversity stories
- Web GIS (ArcGIS Server)
- Support ESA at COP 11 and 12
- Promotional events
- Participation in conferences

www.diversity2.info

The 6 cornerstones of our Approach

- 1. Link biodiversity users and EO experts
 - 2. Selection of best algorithms
 - 3. Software and production
 - 4. Validation
- 5. Communication and product dissemination

6. Preparing the future

Sustainability – 2020 is the goal!

- Sentinel 2 and 3 potential
- Proba-V
 - Proba-V and SYN branch of S3; complementarity
- Cost benefit analysis
 - Preparing a sustainable continuation in order to support CBD strategic plan until 2020
 - Costs of operational production
 - User assessment
- Enlarging the user group
- Service continuation
 - NPP VIIRS to bridge to S3
 - OCM2?
- Recommendations for additional R&D work

Milestones

- Kick-off: September 2012
- March 2013: Preliminary selection of algorithms
- June 2013:
 - Proof of concept: validation on 10 lakes and 3 dryland sites
 - User Consultation Meeting
- October 2013:
 - Processing chain ready
 - In-depth validation
- February/March 2013: User Consultation Meeting
- April 2014
 - Production ready
 - User handbook (biodiversity stories)
 - Quality assessment by users
- August 2014 project finish

Link with GloboLakes

- Frequent, mutual exchange of information, advice, recommendations
- EO data algorithms, SW, products: Diversity $\leftarrow \rightarrow$ GloboLakes
- In-situ data, validation: GloboLakes $\leftarrow \rightarrow$ Diversity

Diversity Meeting, Stirling

Thursday 13.12.2012

09:00	Welcome & logistics	Brockmann, Tyler
09:10	Tour de Table	all
09:15	Diversity II short overview	Brockmann
09:25	GloboLakes, summary of WS	Tyler
09:45	Users and User Requirements	
09:45	User Work Plan	Philipson
10:00	Requirements engineering (RB TOC, Questionnaire etc)	Brockmann
10:15	Requirements for Swedish Lakes	Philipson
10:25	Break	
10:50	GEO Inland water WG, North American Lakes	Greb
11:10	Dryland users	Brito
11:30	other user presentations	tbd
11:45	Discussion	
12:25	Lunch	
13:25	Algorithms (ATBD)	
13:25	Algorithms and processing overview	Brockmann
13:35	Preprocessing	Stelzer
14:20	Lakes AC	Odermatt
14:35	Lakes processing	Odermatt, Philipson
15:05	Break	
15:25	Land AC	Brockmann
15:35	Drylands processing	Gangkofner
16:20	Indicators	Philipson, Fensholt?, Brito?
16:40	Discussion	
	Preliminary site selection review	
17:10	Inland water site	Odermatt, Brockmann
17:25	Dryland sites	Gangkofner
17:10	Production	Fomferra

Team & Key People

BROCKMANN GEOMATICS

SWEDEN AB

CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos

Consultants

Sampsa Koponen

Steve Greb

Rasmus Fensholt