The 1st GloboLakes Project Workshop 太湖湖泊生态系统研究站 Tailu Laboratory for Lates Ecception Research

П

An overview of lake optics and

remote sensing in Lake Taihu

Nanjing Institute of Geography and Limnology

Zhang Yunlin

Taihu Laboratory for Lake Ecosystem Research, Chinese Academy of Sciences

地址 : 江苏省无锡市济湖区大洋多党场杆面山头 Address: Kangshambu, Wutang Vilage, Binhu District, Waa City, Aangsu Province, China 邮稿 (Pentoode) : 214084 地话 (Pontoode) : 486-0510-855511884 转 228, 139811443328 作真 (Fax) : 486-25 57714759

開註 (Website) _ http://www.tahu.ac.on

2012.12.12

中国生态系统研究网络 图案野外科学观测研究站

Outline

1. Background

Solar radiation drives the lake ecosystem

Effect of increased UV-B radiation on lake ecosystem

The ozone hole in Antarctica in October

The ozone hole in Arctic in 2011

Manney et al, Nature, 2011; Balskus et al., Science, 2010

Zooplankton irradiated by UV-B

Water waste event and frequent algal bloom urging water color remote sensing

Turbidity increase due to eutrophication causing the disappearance of SAV

Nutrients

SAV distribution with turbidity and nutrients increases (Scheffer, Nature, 2001)

SAV disappearance

CDOM plays an important role in the global carbon cycle and estimation

Concept and theory framework of lake optics **AOPs** R, Rs Secchi disc, reflectance, Kd, Zeu **Upward radiance** Winel waves **Pure** water **CDOM** 40 **Backscattering** • Particles Phytoplankton Scattering **Tripton** I_z Pecucine absorption, scattering, **IOPs**: backscattering etc

Main contents and key scientific question

Methods

Results

Scientific question

2. Study regions

Number of lakes (Area>1km²): 651
Total area:16558 km² (60% of total freshwater lake areas of China)

Characteristics: shallow and eutrophication

Morphologic Map of Lake Taihu Catchment

Hydrography of Lake Taihu

 km^2 2338 • Area 36500 • Catchment km^2 Mean Depth 1.9 m • Max. Depth 2.9 m m^3 • Lake Volume $44x10^{8}$ Max. Level 4.81 m a.s.l. 2.02 • Min. Level ma.s.l. 300 Retention Time days

Characteristics 1: Diverse ecosystem types

Phytoplanktondominated ecosystem

SAV-dominated ecosystem

Characteristics 2: Frequent algal bloom

Characteristics 3: Strong wind waves and sediment resuspension

3. Main progresses

1. Development and innovation of lake optics study methods

NaclO bleaching

Absorption and relative contribution rate

Zhang et al., 2007, Hydrobiologia

1. Development and innovation of lake optics study methods

Optimization model of tripton spectral absorption

 $\ln a(\lambda) = a_1 - S_1 \lambda \qquad \qquad a_d(\lambda) = a_d(\lambda_0) \exp[S_d(\lambda_0 - \lambda)]$

 $a_{\mathbf{d}}(\lambda) = a_{\mathbf{d}}(\lambda_0) \exp[S_{\mathbf{d}}(\lambda_0 - \lambda)] + K \qquad a(\lambda) = a_4(\lambda/440)^{-S_4}$

Zhang et al., 2011, IJRS

Phytoplankton numerical partition models

 $a_{\rm d}(\lambda) = a_{\rm d}(\lambda_0) \exp[S_{\rm d}(\lambda_0 - \lambda)]$ $a_{\rm ph}(505): a_{\rm ph}(380) = 0.99$ $a_{\rm ph}(580): a_{\rm ph}(692.5) = 0.92$ $a_{d}(\lambda) = a_{d}(\lambda_{0}) \exp[S_{d}(\lambda_{0}-\lambda)] + K$ $a_{ph}(490): a_{ph}(412) = 0.919 \text{Chl}a^{0.012}$ $a_{ph}(510): a_{ph}(412) = 0.581 \text{Chl}a^{0.047}$

With the determination coefficient larger than 0.9 and relative error less than 25%

Zhang et al., 2009, JPR

1. Development and innovation of lake optics study methods

PAR diffuse attenuation coefficient prediction model

 $K_{d}(PAR) = \frac{a}{SDD} \quad K_{d}(PAR) = b \cdot SDD^{c} \quad K_{d}(PAR) = d \cdot C_{t-w}(PAR) + e$

Zhang et al., 2012, OE

Tripton was the dominant factor affecting K_d (PAR), SD and Z_{en} in Lake Taihu

 $K_{\rm d}$ variation with wind waves Relationship between $K_{\rm d}$ (PAR) and wind speed

Zhang et al., 2006, SC-SDEC; Zhang et al., 2007, FLA

Tripton was the dominant affecting factor of Z_{eu} . **SAV** was distributed in these regions with the ratio of $Z_{\rm eu}$ to water **depth** > **0.8**.

> Zhang et al., 2007, FLA

Spatial pattern of SD, Zeu, and SAV distribution

CDOM controls **UVR** attenuation but tripton controls **PAR** attenuation in Yungui Plateau lakes. In contrast, tripton controls **UVR** and **PAR** attenuation in Yangtze River middle and lower reaches lakes

Zhang et al., 2011, PPS

CDOM EEMs of different trophic level

Zhang et al., 2010, L&O

river to the mouth and further to the open water Zh

Zhang et al., 2011, OG

Zhang et al., 2009, WR

Photobleaching causes CDOM decrease as the first-order kinetics Zhang et al., 20

Zhang et al., 2009, Hydrobiologia

Chla spatial-temporal pattern

Calibration and validation of PAR diffuse attenuation coefficient Z

Zhang et al., 2012, OE

Determination coefficient between empirical and VGPM models was higher than 0.80. The yearly mean phytoplankton primary production was 1172.6 mgC·m⁻²·d⁻¹ and the summer accounted for 43.0%.

Zhang et al., 2007, JPR

Summary

Thanks for your attention

Welcome to Lake Taihu

References

- 1. <u>Zhang YL</u> et al. *Optics Express*, 2012, 20: 20482-20493.
- 2. <u>Zhang YL</u> et al. *Optics Express*, 2012, 20: 11882-11898.
- 3. <u>Zhang YL</u> et al. *Hydrobiologia*, 2012, 693: 29–37.
- 4. <u>Zhang YL</u> et al. *Photochemical & Photobiological Sciences*, 2011, 10: 469–482.
- 5. <u>Zhang YL</u> et al. Organic Geochemistry, 2011, 42: 510–519.
- 6. <u>Zhang YL</u> et al. *International Journal of Remote Sensing*, 2011, 32: 3917–3933.
- 7. <u>Zhang YL</u> et al. *Limnology and Oceanography*, 2010, 55: 2645–2659.
- 8. <u>Zhang YL</u> et al. Water Research, 2009, 43: 4685-4697.
- 9. <u>Zhang YL</u> et al. *IEEE Transactions on Geoscience and Remote Sensing*, 2009, 47: 1937–1948.
- 10. Zhang YL et al. Journal of Plankton Research, 2009, 31: 311–323.
- 11. <u>Zhang YL</u> et al. *Hydrobiologia*, 2009, 627:159–168.
- 12. Zhang YL et al. Journal of Plankton Research, 2007, 29: 707–719.
- 13. <u>Zhang YL</u> et al. Fundamental and Applied Limnology, 2007, 170: 11–19.
- 14. <u>Zhang YL</u> et al. *Hydrobiologia*, 2007, 592: 105–120.
- 15. <u>Zhang YL</u> et al. Science in China: Series D Earth Sciences, 2006, 49: 431–442.
- 16. <u>Zhang YL</u> et al. Science in China: Series D Earth Sciences, 2006, 49: 114–125.