Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000

A novel approach for the study of the temporal coherence of global time series

Francesco Finazzi

University of Bergamo - Dept. of Engineering

Joint work with **Claire Miller** and **Marian Scott** University of Glasgow

10-12th December 2012 - 1st GloboLakes Scientific Workshop

Introduction	Coherence	Case study	Software	Conclusions
●0000	000	000000	0	00000
Introduction				

Global change detection

- The study of the temporal coherence of global phenomena can help the detection and the understanding of (possible) global changes.
 - What is temporal coherence?
 - How can it be helpful?
 - How to study temporal coherence?

Introduction	Coherence 000	Case study 000000	Software O	Conclusions
Temporal coherence				

Temporal coherence - Loose definition

- Two phenomena are temporally coherent if they share a similar temporal pattern
 - Global coherence
 - Local coherence

Introduction	Coherence	Case study	Software	Conclusions
	000	000000	O	00000
Coherence examples				

Introduction	Coherence	Case study	Software	Conclusions
Coherence and global changes	000	000000	0	00000

The study of coherence may be useful in detecting global changes. Why?

- It may be difficult to detect a global change by looking at a single time series (noise or signal?)
- It may be difficult to detect a global change by looking at a large number of time series
- It should be easier to detect a global chance by looking at coherent time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Coherence and global changes				

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global chance by looking at coherent time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Coherence and global changes				

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global chance by looking at coherent time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Coherence and global changes				

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global chance by looking at coherent time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation

• What if we are dealing with a large number of time series?

- In general, a large number of time series is not jointly coherent
 Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
- It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
	000	000000	O	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation

What if we are dealing with a large number of time series?

- In general, a large number of time series is not jointly coherent
 Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
- It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
	000	000000	O	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation

What if we are dealing with a large number of time series?

- In general, a large number of time series is not jointly coherent
 Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
- It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation

• What if we are dealing with a large number of time series?

- In general, a large number of time series is not jointly coherent
- Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
- It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
	000	000000	O	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation
- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
	000	000000	O	00000
Study of temporal coherence				

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation
- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series

Introduction	Coherence	Case study	Software	Conclusions
Study of temporal coherence				00000

Coherence is usually defined between pairs of time series and

- it is often used as a synonym of temporal cross correlation
- it has a precise formulation in signal processing which extends the definition of temporal correlation
- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series

 A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

The study of the temporal coherence consists in

Estimating the number of groups of temporally coherent seriesAllocating each time series to belong to a group

In other words: cluster analysis

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.
- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group
- In other words: cluster analysis

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.
- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent seriesAllocating each time series to belong to a group
- In other words: cluster analysis

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.
- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group
- In other words: cluster analysis

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.
- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group
- In other words: cluster analysis

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	0	00000
Clustering				

Time series clustering

Observed time series

Latent clusters

Introduction	Coherence	Case study	Software O	Conclusions
Clustering				

Time series clustering

Observed time series

Introduction	Coherence	Case study	Software	Conclusions
00000	000	•00000	0	00000
Case study				

Case study

Introduction	Coherence	Case study	Software	Conclusions
00000	000	••••••	O	00000
ARC-Lake dataset				

ARC-Lake dataset - LWST time series

http://www.geos.ed.ac.uk/arclake/data.html

Introduction	Coherence	Case study	Software	Conclusions
00000	000	○○●○○○	O	00000
Clustering result				

Clustering result

Introduction	Coherence	Case study	Software	Conclusions
00000	000		O	00000
Singleton clusters				

Cluster 6 vs Cluster 9

Introduction 00000	Coherence 000	Case study	Software O	Conclusions
Cluster map				

Clustering result - Global map

Introduction	Coherence	Case study	Software	Conclusions
00000	000	○○○○●	O	00000
Map zoom				

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	•	00000
D-STEM software				

D-STEM software

D-STEM: Distributed Space Time Expectation Maximization

- Matlab[®] software for the statistical modelling of space-time data
- Distributed and parallel computing
- Large datasets Tested up to 20′000 time series
- Now includes clustering capabilities
- Available at http://code.google.com/p/d-stem/

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	O	●0000
Conclusions				

Conclusions

- The clustering of global time series can be a fundamental step in the detection of global changes
- We developed a clustering technique
 - Based on a sound statistical model
 - Able to provide the number of clusters and the cluster membership
 - Able to work with large datasets
 - Implemented within the D-STEM software
- Future applications: highly noisy data and missing data (TOC dataset)

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	O	
Conclusions				

TOC dataset

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	O	
Conclusions				

TOC dataset - Preliminary results

Introduction	Coherence	Case study	Software	Conclusions
00000	000	000000	O	00000
Conclusions				

TOC dataset - Preliminary results

TOC data - 4 clusters 61° N 7° W 6° W 5° W 4° W 3° W 2° W 1° W 0 60[°] N 59[°] N 58° N 57[°] N 56[°] N 55[°] N

Introduction 00000	Coherence 000	Case study 000000	Software O	Conclusions
References				
Refere	nces			

- Finazzi F., Fassò A. (2012) D-STEM A statistical software for multivariate space-time environmental data modeling. In: Proceedings of the International Workshop on Spatio-Temporal Modelling (METMA VI). Guimarães:Gonçalves A.M., Sousa I., Machado L., Pereira P., Menezes R. and Faria S., ISBN 978-989-97939-0-3.
- Finazzi F., Scott M., Fassò A. (2012) A model based framework for air quality indices and population risk evaluation. With an application to the analysis of Scottish air quality data. Journal of the Royal Statistical Society - Series C - Accepted.
- Hook S., R.C. Wilson, S. MacCallum and C. J. Merchant (2012), Global Climate Lake Surface Temperature in "State of the Climate in 2011, Bull. Amer. Meteorol. Soc., 93 (7), S18-S19.
- MacCallum, S. N. and C. J. Merchant (2012), Surface Water Temperature Observations of Large Lakes by Optimal Estimation, Can J Remote Sensing, 38(1), 25 - 45. doi:10.5589/m12-010.